
Efficient In-Memory, List-Based Text Inversion
David Hawking

Microsoft

Canberra, ACT, Australia

david.hawking@acm.org

Bodo Billerbeck

Microsoft

Melbourne, Victoria, Australia

bodob@microsoft.com

ABSTRACT

When building a large inverted file index on a system with ef-

fectively unlimited memory, performance may be constrained by

RAM latency. To optimise speed requires an understanding of the

non-uniform memory access characteristics of modern systems.

We address three main techniques for improving the performance

of an in-memory, list-based inverted file indexer: List chunking,

in-chunk postings compression, and use of virtual memory “Large

Pages”. We compare performance of dynamic chunking schemes

capable of adapting to the Zipf-like distribution of term frequencies.

Using a data set with 8.5 billion word occurrences, we find that the

techniques are cumulative. Chunking almost halves the memory

required for linked lists, while dramatically reducing the number

of cache-line reads required to traverse the lists; In-chunk compres-

sion further halves the memory footprint, though it does not make

much difference to speed; Large pages reduce the inefficiency of

page table walks and speed up both phases of index building.

KEYWORDS

Information retrieval, Inverted lists, Indexing

ACM Reference format:

David Hawking and Bodo Billerbeck. 2017. Efficient In-Memory, List-Based

Text Inversion. In Proceedings of The 22nd Australasian Document Computing
Symposium, Brisbane, QLD, Australia, December 7–8, 2017 (ADCS 2017),
8 pages.

https://doi.org/10.1145/3166072.3166080

1 INTRODUCTION

We analyse the performance of an inverted file text indexer which

uses a vocabulary structure, plus in-memory linked lists to achieve

the inversion. We show that the structure of the linked lists can

have a significant effect on performance. The data sets we study

comprise large numbers of quite short documents, for example web

page and academic paper titles or web search query logs. These

data sets are characteristic of the intended applications in retrieval,

classification, and query suggestion. We assume that documents

are ordered in descending order of a single static score. We also

assume the off-line case in which new versions of an index are

built off-line rather than the case where an index is updated on

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ADCS 2017, December 7–8, 2017, Brisbane, QLD, Australia
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-

tion for Computing Machinery.

ACM ISBN 978-1-4503-6391-4/17/12. . . $15.00

https://doi.org/10.1145/3166072.3166080

the fly. Our method is one pass, meaning that the input documents

are scanned only once. We consider the indexing of text data sets

containing many billions of term occurrences.

In contrast to most previous work on efficient indexing, we

assume that the hardware configuration used for indexing has suffi-

cient RAM to allow the inversion to occur entirely in memory. This

is not an unrealistic assumption as servers with multiple terabytes

of RAM are now readily (if not cheaply) available. Our focus is thus

on in-memory optimisations. Most modern text retrieval systems

use inverted indexes (concordances) which were first computerised

by Taube [12]. An efficient lookup structure for indexable terms

gives access to all occurrences of each term through lists of postings.

Each posting describes an individual term occurrence and contains

a payload which consists of the document number plus optional

additional information, e.g. within document occurrence positions.

In a survey article, Zobel and Moffat [16, pp. 15–17] describe a

range of different approaches to building inverted indexes. They

claim that dynamically resizable arrays are the best choice for rep-

resenting postings lists built up in memory. The chunked linked

lists which we discuss in this paper can be seen as a flexible way

of implementing dynamically resizable arrays. The BitFunnel in-

dexing system [7] challenges the assumption that inverted files are

superior to signature files in text indexing. Impressive performance

is reported and BitFunnel easily handles incremental additions to

the index, however, bit signatures seem less well suited to the very

short documents in the data sets we study, and do not record term

positions or term frequencies.

We study an approach in which postings lists are built up as

documents are scanned, using a linked list structure similar to that

of Harman and Candela [8]. However, their linked lists were kept

on disk, while ours are entirely in RAM. In Section 4.5 of their

book, Büttcher et al. [4] describe a more efficient chunked version

of linked lists. We take a similar approach and compare multiple

models of chunking, and the use of compression within chunks. We

note that Büttcher et al. found that chunked linked lists performed

better than an alternative implementation of dynamically resizable

arrays based on realloc. Achieving optimal indexing performance

in a large RAM environment requires understanding of the features

of modern system architectures summarised in the next section.

1.1 Recap of hardware architecture

Our study addresses the non-uniformity in memory latency which

is characteristic of these designs. Specific results will vary across

different systems but we believe that the main conclusions and

advice will generalise provided the following assumptions are met:

(1) A large difference between RAM and cache latency;

(2) Each memory access causing the reading or writing a whole

cache line (typically 64 bytes) at a time.

https://doi.org/10.1145/3166072.3166080
https://doi.org/10.1145/3166072.3166080


ADCS 2017, December 7–8, 2017, Brisbane, QLD, Australia Hawking and Billerbeck

(3) Multiple levels of cache; Typically, the L1 cache is split into

two halves, one for instructions and the other for data. In

multi-core CPUs, often the L1 and L2 caches are local to each

core, while L3 is shared by all the cores on a CPU chip.

(4) A virtual memory architecture implemented by a memory

management unit (MMU) with support for large/huge pages

as well as standard 4kB ones.

(5) A limited-capacity Translation Look-Aside Buffer (TLB) to

reduce the need for walking large page tables.

Because we are aiming to eventually handle datasets with up

to 100 billion documents and a trillion postings, we also assume a

64 bit architecture and operating system. The translation between

virtual addresses in a program and physical addresses in RAM is

ultimately controlled by a page table structure. Operating systems

supporting 48-bit virtual addresses
1
typically use a four-level 512-

ary page table tree. Fully populated, such a page table would have

1+512+5122+5123 entries, approximately 135 million, and occupy

about 1GB of memory. That is obviously too large to fit in cache.

Accordingly, even for pages which are present in RAM, address

translation may be quite slow due to the need to “walk the page

table”. Page table walking is hopefully avoided in the majority of

cases by the Translation Look-aside Buffer (TLB), which mediates

every memory access. It is a small associative cache which is able

to supply address translations in one clock cycle. A high rate of

TLB misses seriously degrades performance.

Another memory access issue which complicates the study of in-

memory performance in multi-CPU architectures is the partitioning

of available RAM across CPUs. Access to memory associated with

a different CPU is slower than accessing local memory. To illustrate

the degree of non-uniformity of access times, for a representative

CPU, the best access latency in clock cycles for different levels of

memory in the Intel Core i7 Xeon 5500 series is 4 for L1 cache, 10

for L2 cache, 40 for L3 cache, 60 for local DRAM and 100 for remote

DRAM
2
. For further reading on hardware and operating systems,

the reader is referred to Arpaci-Dusseau and Arpaci-Dusseau [2],

Intel [9], AnandTech [1] and the ISCA conference
3
. We wrote a

simple memory access benchmark to explore these effects, and

report results in the next section.

1.2 Memory access benchmarking

The memory access benchmark allocates a large block of memory

and then accesses a large number of individual bytes with strides of

1, 64, and 4096. With a stride of 64, every access is to a new cache

line. With a stride of 4096, every access is to a new virtual memory

page. The results for the server used in our experiments are shown

in Figure 1. The server has four Intel Xeon E7-4870 CPUs running

at 2.40GHz (32nm Westmere), each with 10 cores. Each core has

a 32KB L1 instruction cache, a 32KB L1 data cache and a 256KB

L2 cache, while the cores on a chip share a 30MB L3 cache. The

system uses rotating disk storage – 4 x 7200rpm drives in a RAID-10

configuration.

1
Common in chips intended for server applications.

2
https://software.intel.com/en-us/forums/intel-manycore-testing-lab/topic/287236 ac-

cessed 07 Jan 2016.

3
www.ece.cmu.edu/calcm/isca2015

Table 1: Notation

p bytes per payload

n bytes per list next pointer

K number of payloads in a list element

s bytes for a particular list element

r number of list elements in a run (with fixed K )
k a parameter controlling settings of r and K
P total number of postings for corpus

B total number of bytes used for all linked lists

v up to v postings are kept in the vocabulary entry

Figure 1: Times reported by the memory access benchmark

for different block sizes and stride values of 1, 64 (next cache

line) and 4096 (next VM page).

 

0

5

10

15

20

25

1GB 2GB 4GB 8GB 16GB 32GB

M
em

o
ry

 A
cc

es
s 

(n
an

o
-s

ec
o

n
d

s)

Stride Length = 1

Stride Length = 64

Stride Length = 4096

In turbo mode, two cores can run up to 2.80GHz. Since our

benchmark is single threaded, the actual CPU speed should have

been 2.80GHz. The server has 512GB of RAM and we experiment

with allocated blocks of from 1GB to 32GB. As can be seen:

• The average access times for a stride of 1 are small (about

1.8 nanoseconds) and very consistent – maximum benefit is

obtained from each 64-byte memory access.

• The access time for stride 4096 is considerably smaller for

the 1GB block than for the larger block sizes. This is because

the number of iterations in the benchmark means that in the

stride of 4096 case the same locations are visited 64 times

each. For the smaller strides there are no repeat visits. In the

stride of 4096 case 262,144 locations are visited per GB. Thus

all the visited locations can fit in L3 cache (30MB capacity,

491,520 cache lines) for the 1GB block size but not for any

of the larger blocks.

We draw the conclusion from this that the primary goal of in-

memory optimisation should be to minimise the number of 64-byte

reads from RAM. Secondary goals of increasing larger scale locality

of reference may reduce the cost of address translation, and increase

the value of on-chip caches, but will not bring as much benefit.

1.3 Further details of indexing

During indexing a vocabulary structure such as a trie, b-tree, or

hashtable is built up. In our case we use a power-of-two hash table

whose capacity doubles if it becomes more than 90% full. We use

the Fowler-Noll-Vo (FNV) hashing function [5] which is claimed to

be fast, to have high dispersion and a low collision rate.

https://software.intel.com/en-us/forums/intel-manycore-testing-lab/topic/287236
www.ece.cmu.edu/calcm/isca2015


Efficient In-Memory, List-Based Text Inversion ADCS 2017, December 7–8, 2017, Brisbane, QLD, Australia

Figure 2: Indexing process: term postings ([document id,

word position] tuples) are accumulated in the vocabulary

hashtable and linked lists during List building and then

stored in an inverted file during List traversal.

List
Traversal

...

...

TERM

zoroastrian

the

perplexity

boardwalk

taoster

…

popular

…

anitgen

meteoric

xenophobic

anthracite

neither

FREQ

1

2

1

1

4

12

1

2

1

1

1

POSTINGS

(4223,4)

(53,3)

(303,1)

(23,2)

(54,3)

(3201,5)

(2,12)

Vocabulary FileCollection

(32,4)

(4,1)

(99,2)

Inverted File

(72,6)

List
Building

...

(33,2)

(98,8)

(104,1)

...

(205,3)

Postings Linked Lists

Each vocabulary item includes an occurrence count, plus pointers

to the start and end of a linked list of postings. The end pointer

supports efficient appending. In the simplest scheme (simplistic)

each list element contains p bytes of payload (typically document

number and term position within the document) plus n bytes to

represent a pointer to the next element of the list. Memory for the

list elements is obtained by allocating the next s = p +n bytes from

a large contiguous memory space. There is no space overhead in

such allocations, and negligible time overhead.
4
If the total number

of postings is P , then the total number of bytes allocated for linked

lists in the simplistic scheme will be B = P ∗ s . We focus on the

performance of two phases only of the indexing process:

(1) List building: Appending postings to the linked list corre-

sponding to term instances encountered during document

scanning, and

(2) List traversal: Traversing the postings lists in order to

write them in compressed form to the actual inverted file,

once List building is complete. Note that a permutation

array is used to allow the postings lists to be processed in

alphabetic order of the terms to which they relate.

These phases are illustrated in Figure 2. Note that memory is con-

tinuously allocated during List building. Each newly created list

element is contiguous with the one before it, except when switching

between 64MB blocks. Memory demand grows monotonically and

peaks at the end of this phase. All of the memory used during List

building is accessed again during List traversal. List elements

are accessed only once during List traversal. They will usually

be accessed twice during List building, once at creation and once

to adjust their NEXT pointer.

1.4 Memory access patterns

During the List building phase there are five main causes of mem-

ory accesses:

(1) Accessing instructions to perform steps (2) to (5) below;

(2) Scanning input text from a buffer set and extracting words;

(3) Looking up words in the vocabulary structure;

(4) Creating a new list element at the next available spot; and

4
Note: that some system implementations of memory allocation functions like malloc()

impose a more than 100% space overhead for small requests. We avoid this by allocating

memory in blocks of 64MB and by keeping our own pointer to the next available

address.

(5) Accessing the previous tail of the list in order to insert a

payload or to update its NEXT pointer.

Hopefully, the loop needed to carry out items 2–5 is tight enough

to permit all instructions to fit into the instruction cache. Item 2

has good locality of reference. Item 3 is essentially random and the

vocabulary structure is typically too large to fit into even the L3

cache. Successive creations of list elements at Item 4 have very good

reference locality. Accessing the tail of lists at Item 5 has reasonably

good locality on average because there is a good probability that

the term whose latest occurrence is being recorded is one which

was encountered recently enough that its previous posting was

accessed recently. The major causes of memory accesses during

List traversal are:

(1) Accessing instructions to perform steps (2) to (4) below;

(2) Accessing terms in the vocabulary structure;

(3) Following the chain of pointers from head to tail of the

corresponding linked list.

(4) Writing postings into a fixed output buffer.

In this case Items 1 and 4 probably have good locality, Item 2 has

similar locality to Item 3 for list building. However, Item 3 for List

traversal has much worse locality of reference than Items 4 and 5

for List building because of large memory address gaps between

successive elements of the same list. Consider, for example, an in-

frequently occurring term such as “zymurgy”. Between successive

occurrences of “zymurgy” there may be a billion other term occur-

rences. In that case the memory address gap between successive

elements of the simplistic linked list for “zymurgy” would be ap-

proximately s GB. We report times for single-threaded indexing to

allow us to focus on the memory access properties of the linked list

and to simplify analysis. Substantial reductions in overall elapsed

time for indexing are to be expected when sharded sub-indexes are

built in parallel and later merged.

2 OPTIMISATION TECHNIQUES.

We propose three different techniques for improving memory per-

formance of the simplistic linked-list indexing method. We also

mention a small trick which further improves performance.

Our starting point is the simplistic method in which a payload

comprises a five-byte document number and a one-byte integer

representing word position within the document. The use of only

one byte is consistent with our focus on indexing short texts. Use

of odd-numbers of bytes is already a significant space saving rel-

ative to using 64-bit and 32-bit integers. We have allowed seven

bytes to represent the NEXT pointer, of which five-bytes is used

as the actual pointer (sufficient to address one terabyte), since in

compression methods described later in this section, the NEXT

pointer is overloaded with book-keeping information. In other

words, p = 6,n = 7, s = p + n = 13.

2.1 List chunking

Chunking is a means to reduce memory demand, and to improve

locality of reference, by storing multiple payloads in a single list

element. A chunked list element containsK (whereK > 1) payloads

but only one NEXT pointer. A counter, taking c bytes, may also

be included to keep track of how many payloads have been used,

but that space can be saved by computing the in-chunk count from



ADCS 2017, December 7–8, 2017, Brisbane, QLD, Australia Hawking and Billerbeck

Table 2: Details of the paper titles collection used in Table 3.

Number of documents 89.53 million

Number of terms 11.98 million

Number of term occurrences (postings) 1.004 billion

Table 3: Length expectancies: paper titles collection.

Length so far Expected final length

1 83.7

10 844.6

100 4078.0

1000 18139.7

10000 82823.5

100000 461881.4

1000000 5004679.7

10000000 25372987.7

the overall count of postings stored, or by making use of the two

bytes in the overloaded NEXT field. Overall there is a memory

saving of (K − 1) ∗ n bytes compared with an unchunked version,

provided that the chunked element actually contains K payloads,

i.e. it is fully used. All chunks but the last in each list will be fully

used, but a substantial memory overhead may be incurred due to

partially used chunks at the end of many postings lists. Choosing

an optimal chunking scheme (Oracular) requires fore-knowledge

of the distribution of postings list lengths, which is unrealistic in

most settings.

2.1.1 Distribution of list lengths. It is well known that the dis-

tribution of term occurrences in text is roughly Zipfian [15] – a

few terms have very high frequency and very many occur very few

times or even once only.

We computed a frequency histogram for the academic paper title

collection described in Table 2, in which the independent variable

is postings list length and the dependent variable is the frequency

of occurrence of lists of that length. Sorting by descending length

and accumulating both frequency and the product of length and

frequency we can, for each length, compute the expected final

length once a postings list has reached a particular length. Table 3

is like an abbreviated actuarial table for postings lists. It shows that

the average length of postings lists in which we have already seen

m postings increases sharply with increasingm. This suggests that

a scheme in which the chunking factor K dynamically adapts to

a growing list is likely to outperform one in which K is fixed. We

explore this hypothesis experimentally later in the paper.

2.1.2 Methods considered. We consider chunking schemes that

divide a postings list into runs of up to r chunks. All the chunks in
a run have the same size (K). Both r and K may vary throughout

a postings list. In the following we describe each of the chunking

methods that we considered; Their characteristics are summarised

in Table 5. Some methods are illustrated in Figure 3.

A scheme which implements a form of geometric growth (i.e.

each K is a constant multiple of the previous one) performs quite

well, but small tweaks can potentially improve on it. We experi-

mented with r > 1 and with the Fibonacci series while Büttcher

and Clarke [3] (See also Section 4.5 of Büttcher et al. [4] experiment

Figure 3: Selected chunking methods: a) Simplistic, b) Fi-

bonacciA (chunk size increases with the the Fibonacci se-

ries), and c) FibonacciB (in addition, run lengths increase

with the Fibonacci series).

r=�, K=1

r=1, K=1r=1, K=1r=2, K=2 r=3, K=3

r=1, K=1r=1, K=1r=1, K=2 r=1, K=3 r=1, K=5

a)

b)

c)

with limiting the maximum size of chunks, and with constant sizes

for the first few postings. Note that the Fibonacci series approxi-

mates a geometric series in which the multiplier is approximately

1.618.

Simplistic – This is the unchunked method we want to improve

upon. The number of list elements is equal to the number

of postings. There will never be any space wasted in over-

allocation but space for a pointer is required in every list

element.

Oracular – If all terms and their frequencywere known in advance,

it would be possible tomake “lists”, consisting of a single chunk

containing all the payloads for a term, and with no space

required for pointers. This is our "speed of light" baseline . For

it to be practical an extra pass would be required through the

text data, to calculate the term frequencies.

Fixed Blocks – Each list element contains a fixed number of pay-

load, plus one pointer. This reduces the overhead due to point-

ers at the cost of over-allocation in the last list element.
5

FibonacciA – As one can see from Table 3, the more postings al-

ready encountered for a particular term, the more additional

postings can be expected to be accumulated in future. A strat-

egy to match this expected growth pattern as closely as possi-

ble should use smaller chunk sizes when postings list lengths

are small and final list lengths are uncertain, and larger chunk

sizes when the list is already long, projecting an even larger

amount of postings to be added in future. FibonacciA is an

example of such a scheme; The number of postings per chunk

grows according to the Fibonacci series. The run length is one,

except for the first two elements.

FibonacciB – This method tracks the ideal curve (Oracular) more

closely by not only increasing the chunk size in line with the

Fibonacci Series, but also the length of runs with each chunk

size.

Power based methods – The remaining methods outlined in Table 5

are based on exponential growth, either with a constant run

length as in the methods Power1, Power5 and Power10, or

with variable run lengths as in the methods Power, Subpower

and Superpower.

Note also that we have also studiedways in which the parameters

of the chunking model can be adapted to the overall characteristics

of a data set as it is being indexed. Space does not permit us to

discuss this. Figure 4 illustrates how some of the methods deviate

from the Oracular allocation for postings lists of different lengths.

5
An anonymous reviewer has suggested that the fixed chunk size should be aligned to

cache size. This would be interesting to follow up in future work.



Efficient In-Memory, List-Based Text Inversion ADCS 2017, December 7–8, 2017, Brisbane, QLD, Australia

Figure 4: Ability of different chunkingmethods tomatch the

minimal space requirements of a postings list.

 

0

0.5

1

1.5

2

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Sp
ac

e 
U

se
d

 (
K

B
)

Postings List Length

Simplistic

Power1

Fixed Blocks

FibonacciB

Oracular

Table 4: PSG (and PPC) scores as the number of payloads

stored in the vocabulary entry v ranges from 0 to 2, again

for p = 6 and n = 5. Because p > n, storing two payloads in

the vocabulary entry would require an increase in memory

requirements for the vocabulary structure.

Scheme v = 0 v = 1 v = 2

Oracular 1.833 (83.5) 1.855 (83.7) 1.864 (323.2)

FibonacciC 1.764 (34.0) 1.802 (50.4) 1.816 (58.7)

Table 5: Chunkingmethods explored on the academic paper

titles collection, using p = 6 and n = 5. The subscript i refers

to the ith run in a postings list. (Powers methods number

from 0, while Fibonacci methods start at the 2nd element of

the sequence: 1, 1, 2, 3, 5, . . ..) Where applicable, we explored

k in the range 2 . . . 8; the best PSG scores are reported.

Method r K PSG PPC

Simplistic ∞ 1 1.0 1.0

Fixed blocks(k=4) ∞ 2 ∗ k 1.549 7.5

FibonacciA 1 fib(i) 1.404 41.6

FibonacciB fib(i) fib(i) 1.763 26.3

FibonacciC fib(i − 3) or 1 if i < 4 fib(i) 1.764 34.7

Power(k=2) ki ki 1.764 28.6

Subpower(k=2) ki−1 ki 1.764 33.3

Superpower(k=2|3)) ki+1 ki 1.759 23.1

Power1(k=2) 1 ki 1.278 44.2

Power5(k=2) 5 ki 1.649 26.1

Power10(k=2) 10 ki 1.701 20.6

Oracular 1.833 83.7

2.1.3 Comparison of chunking methods. We compare the chunk-

ing schemes using two measures (which may be in opposition to

each other.)

• PSG: Potential Problem Size Gain relative to the Simplistic

scheme (i.e. memory required by the Simplistic scheme

divided by memory required by this one), and

• PPC: Average number of Postings Per Chunk.

A high number for the former indicates howmuchwe could scale

up the problem size for a given amount of RAM. A high value for the

latter indicates a significant improvement in locality of reference

during the List traversal phase. However, it may also have a

deleterious effect during List building since the next posting to

be written may be an address within memory allocated long ago.

Table 5 reports the PSG and PPC values obtained for eachmethod,

based on p = 6,n = 5 (payload size and pointer size, respectively).

In our experiments, we actually used p = 6,n = 7. Those values

do not change the PPC values in the table, but they do increase

the PSG values. For example, the PSG values for Oracular, and

FibonacciB increase to 2.167 and 2.058 respectively. For all of the

Power methods and the fixed block method we explored values

of 2 <= k <= 8 and reported the results for the value of k which

achieved the highest PSG score. From Table 5 it is clear that almost

any form of chunking produces a worthwhile increase in PSG and

PPC.

The dynamic families (Power and Fibonacci) of methods per-

form worse when runs are too short. This is illustrated in the re-

sults for Power1 where PPC achieves very high values, but PSG

starts low and decreases rapidly as K increases. Essentially we are

trying to choose values of K which are consistent with the length-

expectancy data, illustrated in Table 5. At a particular point in

indexing, the best choice for the next value of K should relate to

the distribution of extra length yet to come.

The equal best PSG score was achieved by FibonacciC (starting

with the values 1 and 2) and Power (for k = 2) but the PPC value

of FibonacciC was higher. Accordingly the FibonacciCmethod of

chunk allocation seems most promising, but we note that several

other dynamic methods achieve very similar performance, and may

prove to be superior on other collections.

2.2 In-memory compression

A useful technique for compressing postings lists converts a se-

quence of document numbers into a sequence of document num-

ber differences and represents the differences using a variable

length code. There is a substantial literature on compression tech-

niques for postings lists. Trotman [13] identifies three generations:

byte-encoding, word-aligned codes, and SIMD codecs, and empiri-

cally compares several representative examples. We elected to use

the very straightforward variable byte (v-byte) method due to Sc-

holer et al. [11] for its simplicity, and ease of coding. As noted in

Section 2, each posting uses a single byte to represent the word

position within a document – we assume short documents such

as academic paper titles. This makes our work incomparable with

studies of compression effectiveness, and we do not report bits per

posting results. Once in-memory inversion is complete, the final

index can be compressed, in any way desired, to minimise space,

or to maximise decompression speed.

A problem with using compression schemes in conjunction with

chunking is that at the time of allocating memory for the next

chunk, the number of bytes needed is unknown because it depends

upon the gaps between term occurrences. There is also the issue

that use of v-bytes may result in wasted bytes at the end of a chunk,

because the number of bytes left in the chunk may be non-zero, but

less than the number of bytes needed for the next posting. It would



ADCS 2017, December 7–8, 2017, Brisbane, QLD, Australia Hawking and Billerbeck

be possible to allow the bytes of a compressed posting to extend to

the next chunk, but this would complicate and likely slow down

the code to store and decompress. We decided to accept a small

amount of wasted space due to this cause.

2.3 Using “Large Pages”

As noted in Section 1.1, the performance of a process running on a

virtual memory operating system such asWindows, Linux or Solaris

may be significantly reduced by TLB misses. Karakostas et al. [10]

report that TLB misses can add 50% to the execution time of large-

memory programs. Those authors describe an effective and flexible

method for reducing TLB misses but unfortunately their improve-

ment is not available commercially. What is available in the type of

hardware environment we envisage is a more rigid system called

large pages or huge pages depending upon the operating system. In

this system, the page size is increased by a factor of 512, from 4kB

to 2MB. This effectively eliminates the need for the lowest level of

the page table and means that a single entry in the TLB can replace

the 512 entries which would otherwise be required to record the

same segment of the mapping.

On the negative side, the physical memory to satisfy a request for

a large page must be contiguous. This can cause allocation failures

in circumstances where sufficient pages are actually available. Note

that Gog and Petri [6] report further benefits from using 1GB “huge

pages” but these were not available in our environment. We expect

similar benefit from the Karakostas et al. approach, but with less

risk of allocation failures.

2.4 Another trick: Payloads in vocabulary

entries

We noted above that the vocabulary entries contain two pointers

to list elements. The space for the two pointers can potentially be

used to store v payloads when postings lists are very short (see

Trotman et al. [14]). I.e. if the term frequency were one, then no

list would be needed and the payload could be stored in place of

the list pointers. The first v postings for each term are stored in the

vocabulary entry. When the (v + 1)-th occurrence is found, a list is

set up and payloads are copied into it. We have implemented this

for v = 1 and find that it brings a small degree of benefit.

2.5 Discussion of chunking

The advantages of the best chunking method over Simplistic

promise to be quite impressive. While keeping single postings in

the vocabulary hashtable we observe for the best method:

(1) A gain of 80% in the size of problem which can be handled

in a given amount of RAM;

(2) A reduction by a factor of approximately 50 in the number of

pointers which need to be followed during List traversal.

Table 4 shows that the FibonacciC scheme approaches theOrac-

ular PSG scores quite closely. The performance figures above were

all obtained from the term frequency distribution for a particular

collection (Academic) of relatively modest size (P = 1.004 ∗ 109).

3 EXPERIMENTAL METHODOLOGY

3.1 Hardware and Software

We study an indexer written in C which implements Simplistic,

Fixed blocks, Sub-power and FibonacciB methods. It provides

options to turn on and off:

• Storing up to 2 postings in vocabulary entries.

• v-byte compression within chunks.

• The use of large pages for hashtable and list storage.

• The writing of indexing output files (to allow timing of the

parts of the algorithm we wanted to study.)

We compiled the code on Visual Studio 2013 with full optimi-

sation and ran it on the server described in Section 1.2, running

Windows Server 2012R2. Our indexing runs were single-threaded.

3.2 Time and space measurements

We separately measured the elapsed (wall-clock) times for both List

building and List traversal phases. We reported the amount of

memory allocated to the hash table and to the postings lists (linked

lists, postings array, or dynamic arrays.). We ran each condition

one after the other on an otherwise idle machine
6
and recorded

elapsed times for the two phases. We repeated the sequence of runs

three times, and report the median of the observed times.

To reduce I/O times:

(1) We memory mapped the file of documents to be indexed and

pre-scanned the file prior to each indexing run to ensure its

pages were in memory.

(2) During the List traversal phase, i/o to the vocabulary file

and inverted file was disabled.

3.3 Data sets

We study the following collections of (natural language) text titles:

Wikipedia: 11 million page titles from the English Wikipedia.

Academic: 89 million titles of academic papers. This was the

collection whose term frequency list was used to compare

chunking methods.

Webpages: 1.3 billion titles of web pages.

Samples: Randomly chosen samples of the Webpages dataset

in the following proportions:
1

2
,
1

4
,
1

8
,
1

16
,
1

32
,
1

64
,

1

128
.

We also study two artificial collections engineered to have the

same problem size as Webpages but very different term frequency

distributions. This allows us to investigate whether findings on real

data sets are also true for different term frequency distributions.

Uniform A sequence of 46,682 distinct terms is cycled through

over and over to create a collection of 1.004 billion postings.

This creates a uniform distribution of term frequencies, and

constant gaps between postings for the same term. E.g. “AAA

AAB AAC AAD...”. Uniform50B is a much larger version

expanded to 50 billion postings.

Skewed Created in the same way as Uniform, but a single term

’Q’ is inserted before every term occurrence. E.g. “Q AAA

Q AAB Q AAC Q AAD...”. The total number of postings is

identical to Uniform and the term frequency distribution

6
Note that no special steps were taken to ensure this and that all normal Windows

services were running.



Efficient In-Memory, List-Based Text Inversion ADCS 2017, December 7–8, 2017, Brisbane, QLD, Australia

Table 6: Peakmemory usage for linked lists (inMB). PSG val-

ues for List building phase are in parentheses, compared

to Simplistic run (parsimonious payloads and pointers).

Wikipedia Academic Web pages

Problem size 3.27 × 10
7

1.004 × 10
9

8.46 × 10
9

Simplistic (p=12,n=8) 623.8 19,141.3 161,275.1

Simplistic 343.1 10,527.7 88,701.3

FibonacciB 221.2 (1.55) 5971.8 (1.76) 49,619.2 (1.79)

is uniform except for the extreme outlier ’Q’ which has a

frequency of more than 500 million.

3.4 Results: Increasing problem size

Tables 6 and 7 compare Simplistic and FibonacciB chunking meth-

ods both with and without use of Large Pages (1MB) on memory

space and elapsed times for both indexing phases for a range of

problem sizes. The largest of the three collections is 259 times larger

than the smallest. We make the following observations:

(1) Memory space savings due to FibonacciB chunking are

approximately what we expected for Academic (1.76 v. 1.73).

We are not sure why there is this small difference.

(2) Memory space savings are very close to this value for the

largest collection (Web pages). They are quite a bit smaller

forWikipedia but still substantial.

(3) Line 1 of Table 6 shows that a simple-minded implementation

of lists (using 64-bit integers for pointers and document

numbers, and 32-bit integer for word positions) without

chunking would require 157.5GB of memory for linked lists

for theWeb pages corpus instead of the 48.5GB in Line 3.

(4) We expected that the use of chunking might slow down

the List building phase. However, observed differences are

small and in the case of Web pages, the List building time

actually reduced by 2.5 percent.

(5) The speed-ups due to chunking for List traversal were

quite dramatic – up to a factor of 5.65 for the largest col-

lection. Relatively little benefit was seen on the smallest

collection (speed-up by a factor of 1.95) perhaps because

the memory requirements were not large enough to trigger

significant page table access effects.

(6) The use of Large Pages was beneficial in both phases with the

one exception of List building for theWeb pages collection.

However there was quite a large spread of times for this

collection, so this observation may be due to noise. In List

traversal the gains from large pages were much smaller

than those from use of FibonacciB chunking.

3.5 Results: Varying term freq. distribution

Table 8 show that memory gains and speed-ups during List tra-

versal due to chunking are relatively consistent for problems of

the same size regardless of the distribution of term frequencies.

This reassures us that strong gains are achieved from FibonacciB

regardless of term frequency distribution, despite the fact that the

method was designed to match the characteristics of a Zipfian distri-

bution. Of course, if we knew that the term frequency distribution

was uniform, much bigger gains would be possible through the use

of large fixed size chunks. The fifth column reports an experiment

in which the Uniform dataset was scaled up by a factor of 50 to 50

billion postings. No results are shown for the simplistic method

because memory allocation failed. Time to build the lists scaled

almost linearly. The ratio of list building times was
29667.0
554.9 = 53.5

rather than the expected 50.0. Time to scan the lists did not scale,

growing by a factor of
3081.7
22.0 = 140.0. However, when the indexer

read the input file one megabyte at a time into a ring of buffers,

rather than mmap-ing the whole file, list scanning time dropped to

981.9 seconds, a ratio of 44.6.

3.6 Scalability

Table 9 shows how memory usage and elapsed times grow with the

size of the collection. Growth in memory requirements is slightly

sub-linear, presumably because the FibonacciB scheme requires

fewer bytes per posting in longer lists than shorter ones and there

are more long lists in a larger collection. Growth in List traver-

sal times is markedly sublinear possibly due to the same effect.

The most notable feature of the table is the row of build times.

While the build time increases less than expected when moving

from Wikipedia to Academic, from Academic to Web titles it

grows by a factor of 31 while the problem size grows only by a

factor of 8.4. Our suspicion is that this may be due to inefficiencies

in memory mapping the 130GB input file. Clearly the cause of this

blow-out in time needs to be discovered and rectified, but this is

left for future work.

4 DISCUSSION AND CONCLUSIONS

Memory reductions and indexing speed-ups are what we actually

want to optimise. We have focused on relatively high-level perfor-

mance measures, such as elapsed time and memory usage. Further

gains would likely flow from close scrutiny of instructions per

clock, and rates of cache misses, branch mispredictions, and TLB

misses. In this work, we have consciously ignored the efficiency of

the vocabulary structure and its memory-access interaction with

the performance of the linked lists. This aspect would be worth

exploring further in future work.

In the situation where unchunked lists fit into available RAM,

chunking speeds up List traversal by a solid factor due to in-

memory compactness and locality of reference. In all cases where

the unchunked lists are too big to fit into available RAM, the ad-

vantage of chunking is obviously much greater. Even when a very

large data structure is entirely resident in memory, the need to map

virtual memory addresses to physical ones, whenever the sequences

of accesses moves from one page to another, can cause significant

slow downs. The same guidelines apply to in-memory structures

as to ones on disk:

• Keep structures compact;

• Try to achieve maximum locality of reference.

These guidelines also serve to magnify the value of CPU caches

and of memory systems which read a cache line (usually 64 bytes)

at a time. We have shown that the use of compact representations of

payloads and pointers combined with a dynamic chunking scheme

dramatically reduces memory requirements. It also dramatically

reduces the time taken to scan the linked lists without any harm to

the time to build them.



ADCS 2017, December 7–8, 2017, Brisbane, QLD, Australia Hawking and Billerbeck

Table 7: List building and List traversal elapsed times (in seconds) for the three natural collections. Neither chunking nor

use of large pages has much effect on the List building times. The slow times for the Web titles collection is to unexpectedly

slow I/O times for reading the text to be indexed. Speed-up ratios relative to Simplistic are shown in parentheses.

Measurement of Method Wikipedia Academic Web titles

Problem size 3.27 × 10
7

1.004 × 10
9

8.46 × 10
9

List building Simplistic 16.0 335 10,487

Simplistic (Large Pages) 14.7 312 10,740

FibonacciB 15.8 337 10,472

FibonacciB (Large Pages) 14.7 317 10,333

List traversal Simplistic 9.60 211.0 2171

Simplistic (Large Pages) 8.70 (1.10) 166.5 (1.27) 1529 (1.42)

FibonacciB 5.20 (1.85) 48.8 (4.32) 426 (5.10)

FibonacciB (Large Pages) 5.00 (1.92) 42.6 (4.95) 384 (5.65)

Table 8: Peak memory for linked lists as well as List building and List traversal elapsed times for the Academic and three

artificial collections. PSGmemory use values for List building phase only are in parentheses.

Measurement of Method Academic Uniform Skewed Uniform50B

Problem size 1.004 × 10
9

1.004 × 10
9

1.004 × 10
9

5 × 10
10

Peak memory (MB) Simplistic 10527.7 10527.7 10527.7 –

FibonacciB 5971.8 (1.76) 5831.2 (1.81) 5792.5 (1.82) 286656.0

List building (seconds) Simplistic 335.3 560.4 336.6 –

FibonacciB 337.1 554.9 340.3 29667.0

List traversal (seconds) Simplistic 211.0 88.1 64.1 –

FibonacciB 48.8 22.0 18.4 3081.7

Table 9: Scaling with problem size using FibonacciB chunk-

ingwithout Large Pages.Memory sizes are the peakmemory

use for linked list elements.

Wikipedia Academic Web pages

Problem size 3.27 × 10
7

1.004 × 10
9

8.46 × 10
9

Problem size 1.0 30.7 258.7

Memory size 1.0 27.0 224.3

Build time 1.0 21.3 662.8

Scan time 1.0 9.38 81.9

Large pages bring modest benefits which add to those brought

by other techniques. However, operating system support for large

virtual memory pages comes with a number of restrictions.

Somewhat to our surprise, use of v-byte compression within

chunks made relatively little difference to the speed of either phase.

However, the further halving of thememory required to store linked

lists argues in it is favour.

The best combinationwe found employs a combination of storing

very short postings lists in vocabulary entries, Fibonacci dynamic

chunking, compression within chunks, and large VM pages.

REFERENCES

[1] AnandTech. Anandtech website. www.anandtech.com, Accessed 2017.

[2] R. H. Arpaci-Dusseau and A. C. Arpaci-Dusseau. Operating Systems: Three Easy
Pieces. Arpaci-Dusseau Books, 0.90 edition, March 2015.

[3] S. Büttcher and C. L. Clarke. Memory management strategies for single-pass

index construction in text retrieval systems. University of Waterloo Technical
Report CS-2005-32, 2005.

[4] S. Büttcher, C. L. A. Clarke, and G. V. Cormack. Information Retrieval: Implement-
ing and evaluating search engines. MIT Press, Cambridge, MA, 2010.

[5] G. Fowler, P. Vo, and L. C. Noll. FNV hash. Website, Accessed 13 July 2015.

www.isthe.com/chongo/tech/comp/fnv/. Accessed 13 July 2015.

[6] S. Gog andM. Petri. Optimized succinct data structures for massive data. Software:
Practice and Experience, 44(11):1287–1314, 2014.

[7] B. Goodwin, M. Hopcroft, D. Luu, A. Clemmer, M. Curmei, S. Elnikety, and Y. He.

BitFunnel: Revisiting signatures for search. In Proceedings of SIGIR 2017, pages
605–614, New York, NY, USA, 2017. ACM.

[8] D. Harman and G. Candela. Retrieving records from a gigabyte of text on a

minicomputer using statistical ranking. JASIS, 41:581–589, 1990. https://www.

asis.org/Publications/JASIS/Best_Jasist/1991CandelaandHarman.pdf.

[9] Intel. Intel 64 and ia-32 architectures software developer manuals. https://

software.intel.com/en-us/articles/intel-sdm, Accessed 2017.

[10] V. Karakostas, J. Gandhi, F. Ayar, A. Cristal, M. D. Hill, K. S. McKinley, M. Ne-

mirovsky, M. M. Swift, and O. Ünsal. Redundant memory mappings for fast

access to large memories. In ACM/IEEE International Symposium on Computer
Architecture (ISCA), 2015.

[11] F. Scholer, H. E. Williams, J. Yiannis, and J. Zobel. Compression of inverted

indexes for fast query evaluation. In Proceedings of SIGIR 2002, SIGIR ’02, pages

222–229, New York, NY, USA, 2002. ACM.

[12] M. Taube. Studies in coordinate indexing. Documentation Incorporated, 1953.

[13] A. Trotman. Compression, SIMD, and postings lists. In Proceedings of the 2014
Australasian Document Computing Symposium, page 50. ACM, 2014.

[14] A. Trotman, X. Jia, and M. Crane. Managing short postings lists. In ADCS, pages
113–116, 2013.

[15] G. K. Zipf. Human behavior and the principle of least effort. Addison-Wesley, 1949.

[16] J. Zobel and A. Moffat. Inverted files for text search engines. ACM Computing
Surveys, 38(2), July 2006.

www.anandtech.com
www.isthe.com/chongo/tech/comp/fnv/
https://www.asis.org/Publications/JASIS/Best_Jasist/1991CandelaandHarman.pdf
https://www.asis.org/Publications/JASIS/Best_Jasist/1991CandelaandHarman.pdf
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm

	Abstract
	1 Introduction
	1.1 Recap of hardware architecture
	1.2 Memory access benchmarking
	1.3 Further details of indexing
	1.4 Memory access patterns

	2 Optimisation techniques.
	2.1 List chunking
	2.2 In-memory compression
	2.3 Using ``Large Pages''
	2.4 Another trick: Payloads in vocabulary entries
	2.5 Discussion of chunking

	3 Experimental methodology
	3.1 Hardware and Software
	3.2 Time and space measurements
	3.3 Data sets
	3.4 Results: Increasing problem size
	3.5 Results: Varying term freq. distribution
	3.6 Scalability

	4 Discussion and conclusions
	References

